A validated software application to measure fiber organization in soft tissue.
نویسندگان
چکیده
The mechanical behavior of soft connective tissue is governed by a dense network of fibrillar proteins in the extracellular matrix. Characterization of this fibrous network requires the accurate extraction of descriptive structural parameters from imaging data, including fiber dispersion and mean fiber orientation. Common methods to quantify fiber parameters include fast Fourier transforms (FFT) and structure tensors; however, information is limited on the accuracy of these methods. In this study, we compared these two methods using test images of fiber networks with varying topology. The FFT method with a band-pass filter was the most accurate, with an error of [Formula: see text] in measuring mean fiber orientation and an error of [Formula: see text] in measuring fiber dispersion in the test images. The accuracy of the structure tensor method was approximately five times worse than the FFT band-pass method when measuring fiber dispersion. A free software application, FiberFit, was then developed that utilizes an FFT band-pass filter to fit fiber orientations to a semicircular von Mises distribution. FiberFit was used to measure collagen fibril organization in confocal images of bovine ligament at magnifications of [Formula: see text] and [Formula: see text]. Grayscale conversion prior to FFT analysis gave the most accurate results, with errors of [Formula: see text] for mean fiber orientation and [Formula: see text] for fiber dispersion when measuring confocal images at [Formula: see text]. By developing and validating a software application that facilitates the automated analysis of fiber organization, this study can help advance a mechanistic understanding of collagen networks and help clarify the mechanobiology of soft tissue remodeling and repair.
منابع مشابه
A fiber-reinforced Transversely Isotropic Constitutive Model for Liver Tissue
Biomechanical properties of soft tissue, such as liver, are important in modeling computer aided surgical procedures. Experimental evidences show that liver tissue is transversely isotropic. In this article, considering the liver tissue as an incompressible fiber-reinforced composite with one family of fibers, an exponential strain energy function (SEF) is proposed. The proposed SEF is based on...
متن کاملThe Effect of Polarized Laser Radiation on Viscoelastic Properties of Soft Tissue
Background: Laser-tissue interaction on low-level laser therapy (LLLT) has widespread medical applications (e.g., improved wound healing). The tensile strength of radiated tissue by LLLT is known to be increased mainly because of cross collagen bands developed after radiation.Objective: In this work, we studied the instantaneous effect of radiation of polarized laser beam on the viscoelastic ti...
متن کاملDesign and Production of Two-Piece Thyroid-Neck Phantom by the Concurrent Use of Epoxy Resin and Poly(Methyl Methacrylate) Soft Tissue Equivalent Materials
The aim of this report is to present a new two-piece thyroid-neck phantom produced by the concurrent use of epoxy resin and poly(methyl methacrylate) (PMMA: plexiglass) soft tissue equivalent materials. Accordingly, mass attenuation coefficients of the epoxy resin and the plexiglass compounds were obtained from simulation (NIST XCOM 3.1) and measurements (practical dosimetry) and compared to th...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملEffect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering
Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomechanics and modeling in mechanobiology
دوره 15 6 شماره
صفحات -
تاریخ انتشار 2016